Examen blanc de Mathématiques 2ème année Baccalauréat - Sciences PC et SVT

Réalisé par Youssef SEMHI Contact 0644127117 / 0708875223

Exercice 1

Dans l'espace muni d'un repère orthonormé direct $(O; \vec{i}; \vec{j}; \vec{k})$, on considère les points A(2; 1; 4), B(0; 3; 3), C(4; 2; 2) et D(0; -3; 0).

Soit (S) l'ensemble des points M dans l'espace tels que : $\overrightarrow{AM} \cdot \overrightarrow{DM} = 0$.

- 1. (a) Montrer que : $x^2 + y^2 + z^2 2x + 2y 4z 3 = 0$ est une équation cartésienne de (S).
 - (b) Montrer que (S) est une sphère de centre $\Omega(1; -1; 2)$ et de rayon R = 3.
- 2. (a) Montrer que : $\overrightarrow{AB} \wedge \overrightarrow{AC} = -3\overrightarrow{i} 6\overrightarrow{j} 6\overrightarrow{k}$, puis en déduire que les points A, B et C définissent un plan.
 - (b) Montrer que : x + 2y + 2z 12 = 0 est une équation cartésienne du plan (ABC).
- 3. Déterminer l'aire du triangle ABC.
- 4. (a) Montrer que le plan (ABC) est tangent à la sphère (S).
 - (b) Montrer que le point A est le point de contact de (ABC) et (S).
- 5. Montrer que : x + 2y + 2z = 0 est une équation cartésienne du plan (P) passant par O et parallèle au plan (ABC).
- 6. (a) Montrer que le plan (P) coupe la sphère (S) selon un cercle (Γ) de rayon $r=2\sqrt{2}$.
 - (b) Déterminer une représentation paramétrique de la droite (Δ) passant par le point Ω et perpendiculaire au plan (P).
 - (c) Déterminer le centre du cercle (Γ) .

Exercice 2

Le plan complexe \mathcal{P} est muni d'un repère orthonormé direct $(O, \vec{e}_1, \vec{e}_2)$. On considère les points A, B, C et D d'affixes respectives :

$$a = 3 + 3i$$
, $b = 3 - 3i$, $c = 6$, $d = 9 + 3i$.

1. Montrer que a et b sont des solutions de l'équation :

$$z^2 - 6z + 18 = 0.$$

- 2. (a) Écrire a et b sous forme exponentielle.
 - (b) En déduire que :

$$a^4 + ib^2 + 306 = 0$$
 et que $\frac{a}{b} \in i\mathbb{R}$.

3. On considère la translation t de vecteur \overrightarrow{OA} . Prouver que C est l'image de B par t.

4. Vérifier que :

$$\frac{b-c}{a-c} = i,$$

puis en déduire que le quadrilatère OACB est un carré.

- 5. Soit le point M'(z') image du point M(z) par la rotation r de centre C et d'angle $-\frac{\pi}{2}$.
 - (a) Vérifier que :

$$z' = -iz + 6 + 6i.$$

- (b) Démontrer que D est l'image de A par la rotation r.
- (c) En déduire la nature du triangle ADC.

Exercice 3

Un sac contient:

- 3 boules rouges (R)
- 4 boules noires (N)
- 3 boules blanches (B)

Toutes les boules sont indiscernables au toucher. On tire simultanément 3 boules du sac.

- 1. Calculer la probabilité de chacun des événements suivants :
 - A : "Obtenir 3 boules de même couleur"
 - B: "Obtenir trois boules de couleurs différentes deux à deux"
- 2. Soit X la variable aléatoire qui correspond au nombre de couleurs obtenues après chaque tirage
 - (a) Donner les valeurs possibles de $X(\Omega)$
 - (b) Déterminer la loi de probabilité de la variable X
- 3. On répète l'épreuve précédente 4 fois de suite en remettant, dans l'urne, après chaque tirage, les boules tirées. Calculer la probabilité pour que l'événement A soit réalisé exactement 3 fois.

Exercice 4

1. (a) Vérifier que pour tout $x \in \mathbb{R} \setminus \{2\}$:

$$\frac{x^2 + 3x - 2}{x - 2} = x + 5 + \frac{8}{x - 2}$$

(b) En déduire la valeur de l'intégrale :

$$\int_0^1 \frac{x^2 + 3x - 2}{x - 2} \, dx$$

2. En utilisant une intégration par parties, montrer que :

$$\int_{1}^{e^2} \frac{\ln(x)}{\sqrt{x}} \, dx = 4$$

3. (a) Résoudre l'équation différentielle suivante :

$$y'' - 6y' + 9y = 0$$

(b) Déterminer la solution h qui satisfait aux conditions :

$$h(0) = 3$$
 et $h'(0) = -1$

(c) En déduire une primitive de h qui s'annule en 0.

PROBLEM

Partie 1

Soit q la fonction numérique définie sur \mathbb{R} par :

$$g(x) = e^x - x - 1$$

1. Calculer

$$\lim_{x \to -\infty} g(x) \quad \text{et} \quad \lim_{x \to +\infty} g(x)$$

- 2. a) Calculer g'(x) pour tout x de \mathbb{R}
 - b) Dresser le tableau de variations de g sur \mathbb{R}
 - c) Démontrer que $(\forall x \in \mathbb{R}^*), g(x) > 0$
- 3. Montrer que l'équation g(x) = x admet une solution unique α sur l'intervalle [1; 2]

Partie 2

Soit f la fonction numérique définie par :

$$f(x) = \begin{cases} e^{-x} + \ln(x+1) & \text{pour } x \ge 0\\ \frac{1}{x}e^{\frac{1}{x}} + 1 & \text{pour } x < 0 \end{cases}$$

Soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

1. Déterminer D_f l'ensemble de définition de f, puis calculer

$$\lim_{x \to -\infty} f(x) \quad \text{et} \quad \lim_{x \to +\infty} f(x)$$

2. Montrer que

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = 0 \quad \text{et} \quad \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = 0$$

puis interpréter géométriquement les résultats obtenus pour x>0

- 3. a) Montrer que $(\forall x \in \mathbb{R}_+^*)$: $f'(x) = \frac{e^{-x}g(x)}{x+1}$
 - b) Calculer f'(x) pour tout x de \mathbb{R}_{-}^{*} , puis montrer que f'(x) et (x+1) ont le même signe
 - c) Dresser le tableau de variations de f sur D_f
- 4. Montrer que

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0$$

puis étudier les branches infinies de (C_f)

- 5. Construire la courbe (C_f)
- 6. Calculer l'aire du domaine délimité par (C_f) , l'axe des abscisses, les droites d'équation x=0 et x=1

Partie 3

Soit (u_n) la suite numérique définie par :

$$\begin{cases} u_0 = \ln(2) \\ u_{n+1} = g(u_n) \end{cases} \quad (\forall n \in \mathbb{N})$$

- 1. Calculer u_1 puis vérifier que $0 < u_1 < u_0 < \alpha$
- 2. Montrer que $(\forall n \in \mathbb{N}), 0 < u_n < \alpha$
- 3. Montrer que (u_n) est décroissante
- 4. Démontrer que (u_n) est convergente puis calculer sa limite

Correction

Corrige exercice 1:

1. (a) Équation de (S):

$$\overrightarrow{AM} = (x - 2, y - 1, z - 4)$$

$$\overrightarrow{DM} = (x, y + 3, z)$$

$$\overrightarrow{AM} \cdot \overrightarrow{DM} = x(x - 2) + (y + 3)(y - 1) + z(z - 4) = 0$$

$$\Rightarrow x^2 + y^2 + z^2 - 2x + 2y - 4z - 3 = 0$$

(b) **Sphère** (S):

$$(x^{2} - 2x) + (y^{2} + 2y) + (z^{2} - 4z) = 3$$
$$(x - 1)^{2} + (y + 1)^{2} + (z - 2)^{2} = 9$$
Centre $\Omega(1; -1; 2)$, Rayon $R = 3$

2. (a) Produit vectoriel:

$$\overrightarrow{AB} = (-2, 2, -1)$$

$$\overrightarrow{AC} = (2, 1, -2)$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 2 & -1 \\ 2 & 1 & -2 \end{vmatrix} = -3\vec{i} - 6\vec{j} - 6\vec{k}$$

Ce vecteur non nul confirme que A,B,C définissent un plan.

(b) **Plan** (ABC) :

$$-3(x-2) + 6(y-1) + 6(z-4) = 0 \Rightarrow x + 2y + 2z - 12 = 0$$

3. Aire du triangle ABC :

$$Aire_{ABC} = \frac{1}{2} \|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = \frac{9}{2}$$

4. (a) Tangence:

$$d(\Omega, (ABC)) = \frac{|1 + 2(-1) + 2(2) - 12|}{3} = 3 = R$$

Donc le plan (ABC) est tangent à la sphere (S)

(b) Point de contact :

Appartenance à (ABC):

Équation du plan : x + 2y + 2z - 12 = 0

Pour A(2, 1, 4):

$$2 + 2(1) + 2(4) - 12 = 0$$

Appartenance à (S):

Équation de
$$(S)$$
: $x^2 + y^2 + z^2 - 2x + 2y - 4z - 3 = 0$

Pour A(2, 1, 4):

$$4+1+16-4+2-16-3=0$$

Unicité: Le plan (ABC) est tangent à la sphère (S) (question 4.a), donc leur intersection est réduite à un seul point. Comme A appartient aux deux, c'est le point de contact.

Conclusion:

$$A$$
 est le point de contact entre (ABC) et (S)

5. **Plan** (P):

$$ax + by + cz + d = 0$$

$$x + 2y + 2z + d = 0 \quad \text{parallèle à (ABC)}$$

$$x + 2y + 2z = 0 \quad \text{passant par O}$$

$$(P): x + 2y + 2z = 0$$

6. (a) Cercle (Γ) :

Sphère (S): centre $\Omega(1, -1, 2)$, rayon R = 3. Plan (P): x + 2y + 2z = 0.

Calcul de la distance $d(\Omega, (P))$:

$$d = \frac{|1 \cdot 1 + 2 \cdot (-1) + 2 \cdot 2|}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{|1 - 2 + 4|}{3} = 1 < R$$

Donc le plan (P) coupe la sphère (S) selon un cercle (Γ) de rayon r avec :

$$r = \sqrt{R^2 - d^2} = \sqrt{3^2 - 1^2} = \sqrt{8} = \boxed{2\sqrt{2}}$$

(b) **Droite** (Δ) :

 (Δ) passe par $\Omega(1, -1, 2)$ (centre de (S)).

Elle est perpendiculaire à (P), donc son vecteur directeur est le vecteur normal à (P): $\vec{n} = (1, 2, 2)$.

Représentation paramétrique :

$$(\Delta): \begin{cases} x = 1 + t \\ y = -1 + 2t \\ z = 2 + 2t \end{cases} \quad (\text{où } t \in \mathbb{R})$$

(c) Centre de (Γ) : Le centre de (Γ) est l'intersection de : La droite (Δ) perpendiculaire à (P) passant par Ω , Le plan (P).

$$(1+t) + 2(-1+2t) + 2(2+2t) = 0$$

$$1+t-2+4t+4+4t=0 \Rightarrow 9t+3=0 \Rightarrow t=-\frac{1}{3}$$

$$\begin{cases} x = 1 + (-\frac{1}{3}) = \frac{2}{3} \\ y = -1 + 2(-\frac{1}{3}) = -\frac{5}{3} \\ z = 2 + 2(-\frac{1}{3}) = \frac{4}{3} \end{cases}$$
Centre de (Γ) :
$$\left(\frac{2}{3}, -\frac{5}{3}, \frac{4}{3}\right)$$

Corrige exercice 2:

1. L'équation $z^2 - 6z + 18 = 0$

$$a^{2} - 6a + 18 = (3+3i)^{2} - 6(3+3i) + 18 = 0$$
$$b^{2} - 6b + 18 = (3-3i)^{2} - 6(3-3i) + 18 = 0$$

- 2. Forme exponentielle
 - (a) **Pour** a = 3 + 3i:

Module
$$|a| = 3\sqrt{2}$$
,
 $a = |a| \left(\frac{3}{3\sqrt{2}} + \frac{3}{3\sqrt{2}} \right)$
 $a = 3\sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right)$
 $a = 3\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$,
 $a = 3\sqrt{2}e^{i\pi/4}$.

Pour b = 3 + 3i:

Module
$$|b| = 3\sqrt{2}$$
,
 $b = |b| \left(\frac{3}{3\sqrt{2}} - \frac{3}{3\sqrt{2}}\right)$
 $b = 3\sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right)$
 $b = 3\sqrt{2} \left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)$,
 $b = 3\sqrt{2} \left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)$,
 $b = 3\sqrt{2}e^{-i\pi/4}$.

(b)
$$a = 3\sqrt{2}e^{i\pi/4} \Rightarrow a^4 = (3\sqrt{2})^4 e^{i\pi} = 324 \times (-1) = -324$$

$$b = 3\sqrt{2}e^{-i\pi/4} \Rightarrow b^2 = (3\sqrt{2})^2 e^{-i\pi/2} = 18 \times (-i) = -18i$$

$$ib^2 = i \times (-18i) = -18i^2 = 18$$

$$a^4 + ib^2 + 306 = -324 + 18 + 306 = 0$$

$$\boxed{a^4 + ib^2 + 306 = 0}$$

(c) Démontrons que $\frac{a}{b} \in i\mathbb{R}$:

$$\frac{a}{b} = \frac{3\sqrt{2}e^{i\pi/4}}{3\sqrt{2}e^{-i\pi/4}} = e^{i\pi/2} = i$$

$$\frac{a}{b} = i \in i\mathbb{R}$$

3. Translation:

Définition de la translation :

$$t: z \mapsto z + a$$

$$z'_B = b + a = (3 - 3i) + (3 + 3i) = 6$$

$$z_B' = c \quad \text{car} \quad c = 6$$

Conclusion:

$$c = b + a = 6$$

4. Quadrilatère OACB est un carré car :

$$\frac{b-c}{a-c} = \frac{-3-3i}{-3+3i} = \frac{1+i}{1-i} = i$$

$$OA = |3 + 3i| = 3\sqrt{2},$$

 $OB = |3 - 3i| = 3\sqrt{2},$
 $AC = |-3 + 3i| = 3\sqrt{2},$
 $BC = |-3 - 3i| = 3\sqrt{2}.$
 $OA = OB = AC = BC = 3\sqrt{2}$

5. Rotation

monstremath.com

(a) Formule de la rotation

Centre :
$$C$$
 ($c=6$)
Angle : $-\frac{\pi}{2}$
$$z'=e^{-i\pi/2}(z-6)+6=-i(z-6)+6=\boxed{-iz+6+6i}$$

(b) Image de A par la rotation

$$z'_A = -i(3+3i) + 6 + 6i = 9 + 3i = \boxed{d}$$

(c) Nature du triangle ADC

Ona:

$$AD = |6| = 6,$$

$$AC = DC = 3\sqrt{2}.$$

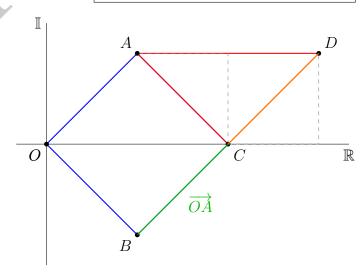
et on a:

$$c-a = 3-3i , c-d = -3-3i$$

$$\frac{c-a}{c-d} = \frac{3-3i}{-3-3i} = -\frac{1-i}{1+i} = i$$

$$\arg\left(\frac{c-a}{c-d}\right) = \arg(i) = \boxed{\frac{\pi}{2}}$$

Triangle ADC rectangle isocèle en C



Corrige exercice 3:

Le sac contient :

- 3 boules rouges (R)
- 4 boules noires (N)
- 3 boules blanches (B)

Total : 3 + 4 + 3 = 10 boules. On tire simultanément 3 boules.

1. Probabilité d'obtenir 3 boules de même couleur

Nombre total de tirages possibles :

$$C_{10}^3 = 120$$

Cas favorables:

- 3 rouges : $C_3^3 = 1$
- 3 noires : $C_4^3 = 4$
- 3 blanches : $C_3^3 = 1$

Total cas favorables : 1 + 4 + 1 = 6

Probabilité:

$$P(A) = \frac{6}{120} = \boxed{\frac{1}{20}}$$

Probabilité d'obtenir 3 couleurs différentes

Cas favorables:

$$C_3^1 \times C_4^1 \times C_3^1 = 3 \times 4 \times 3 = 36$$

Probabilité:

$$P(B) = \frac{36}{120} = \boxed{\frac{3}{10}}$$

- 2. Question 2 : Variable aléatoire X
 - (a)

$$X(\Omega) = \boxed{\{1, 2, 3\}}$$

(b)
$$P(X = 1) = P(A) = \frac{1}{20}$$

 $P(X = 3) = P(B) = \frac{3}{10}$

$$P(X = 2) = 1 - P(X = 1) - P(X = 3) = \boxed{\frac{13}{20}}$$

3. On répète 4 fois l'expérience avec remise

Probabilité que A soit réalisé exactement 3 fois :

$$C_4^3 \left(\frac{1}{20}\right)^3 \left(\frac{19}{20}\right)^1 = \boxed{\frac{19}{40000}}$$

Corrige exercice 4:

1)

a) **on a** :

$$x+5+\frac{8}{x-2} = \frac{(x+5)(x-2)+8}{x-2}$$
$$= \frac{x^2-2x+5x-10+8}{x-2}$$
$$= \frac{x^2+3x-2}{x-2}$$

L'égalité est vérifiée pour tout $x \in \mathbb{R} \setminus \{2\}$.

b) Calcul de l'intégrale:

$$\int_0^1 \frac{x^2 + 3x - 2}{x - 2} \, dx = \int_0^1 \left(x + 5 + \frac{8}{x - 2} \right) dx$$

$$= \left[\frac{x^2}{2} + 5x + 8 \ln|x - 2| \right]_0^1$$

$$= \left(\frac{1}{2} + 5 + 8 \ln 1 \right) - (0 + 0 + 8 \ln 2)$$

$$= \frac{11}{2} - 8 \ln 2$$

$$\int_0^1 \frac{x^2 + 3x - 2}{x - 2} \, dx = \frac{11}{2} - 8 \ln 2$$

2)

Intégration par parties

$$\int_{1}^{e^2} \frac{\ln x}{\sqrt{x}} \, dx$$

On pose:

Posons
$$u = \ln x \Rightarrow u' = \frac{1}{x}$$

 $v' = x^{-1/2} \Rightarrow v = 2x^{1/2}$

$$\int_{1}^{e^{2}} u \, v' = [uv]_{1}^{e^{2}} - \int_{1}^{e^{2}} v \, u'$$

$$= \left[2\sqrt{x} \ln x \right]_{1}^{e^{2}} - \int_{1}^{e^{2}} \frac{2}{\sqrt{x}} dx$$

$$= (2e \ln e^{2} - 0) - \left[4\sqrt{x} \right]_{1}^{e^{2}}$$

$$= 4e - (4e - 4) = 4$$

$$\int_{1}^{e^2} \frac{\ln x}{\sqrt{x}} \, dx = 4$$

a) Résolution de l'équation différentielle :

$$y'' - 6y' + 9y = 0$$

Équation caractéristique : $r^2 - 6r + 9 = 0 \Rightarrow (r - 3)^2 = 0$

Solution générale:

$$y(x) = (A + Bx)e^{3x}$$

$$y(x) = (A + Bx)e^{3x}$$

b) Solution particulière:

$$h(0) = 3 \Rightarrow A = 3$$

$$h'(x) = Be^{3x} + 3(A + Bx)e^{3x}$$

$$h'(0) = -1 \Rightarrow B + 3A = -1 \Rightarrow B = -10$$

$$h(x) = (3 - 10x)e^{3x}$$

c) Primitive s'annulant en 0:

$$H(x) = \int_0^x h(t)dt = \int_0^x (3 - 10t)e^{3t}dt$$

Par intégration par parties :

Par intégration par parties :
$$H(x) = \left[\frac{3-10t}{3}e^{3t}\right]_0^x + \frac{10}{3}\int_0^x e^{3t}dt$$

$$= \frac{3-10x}{3}e^{3x} - 1 + \frac{10}{9}(e^{3x} - 1)$$

$$H(x) = \left(1 - \frac{10x}{3} + \frac{10}{9}\right)e^{3x} - \frac{19}{9}$$

$$H(x) = \left(1 - \frac{10x}{3} + \frac{10}{9}\right)e^{3x} - \frac{19}{9}$$

Corrige PROBLEM:

Partie 1:

Soit $g(x) = e^x - x - 1$ définie sur \mathbb{R} .

1)

 $\mathbf{En} - \infty$:

$$\lim_{x \to -\infty} e^x = 0 \quad \text{et} \quad \lim_{x \to -\infty} (-x) = +\infty$$

Donc:

$$\lim_{x \to -\infty} g(x) = \boxed{+\infty}$$

 $\mathbf{En} + \infty$:

$$\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 - \frac{1}{x} \right) = +\infty$$

Donc:

$$\lim_{x \to +\infty} g(x) = \boxed{+\infty}$$

a) Dérivée :

$$g'(x) = \boxed{e^x - 1}$$

b) Tableau de variations:

$$g'(x) = 0 \Leftrightarrow e^x = 1 \Leftrightarrow x = 0$$

 $g'(x) < 0 \text{ sur }]-\infty, 0[\text{ et } g'(x) > 0 \text{ sur }]0, +\infty[$

x	$-\infty$		0		$+\infty$
g'(x)		_	0	+	
g(x)	$+\infty$	V	0	7	$+\infty$

c) Sur $]-\infty, 0[:g]$ strictement décroissante avec $\lim_{x\to-\infty} g(x) = +\infty$ et g(0) = 0, donc g(x) > 0.

Sur $]0, +\infty[: g \text{ strictement croissante avec } g(0) = 0, \text{ donc } g(x) > 0.$ En x = 0: g(0) = 0.

$$\forall x \in \mathbb{R}^*, g(x) > 0$$

3)

Considérons $h(x) = g(x) - x = e^x - 2x - 1$ sur [1, 2]:

$$h(1) = e - 3 \approx -0.28 < 0$$

$$h(2) = e^2 - 5 \approx 2.39 > 0$$

h continue (car g et $x \mapsto x$ le sont)

 $h'(x) = e^x - 2 > 0$ sur]1,2[(car $e^x > e^1 > 2$) donc il est strictement croissant sur]1,2[

Donc:

$$\exists! \alpha \in]1,2[$$
 tel que $g(\alpha) = \alpha$

Partie 2:

Soit f définie par :

$$f(x) = \begin{cases} e^{-x} + \ln(x+1) & \text{si } x \ge 0\\ \frac{1}{x}e^{1/x} + 1 & \text{si } x < 0 \end{cases}$$

1)

Domaine de définition :

$$D_f = \mathbb{R}$$

Limite en $-\infty$: Posons $t = \frac{1}{x} \to 0^-$:

$$\lim_{x \to -\infty} \frac{e^{1/x}}{x} = \lim_{t \to 0^{-}} t e^{t} = 0$$
$$\lim_{x \to -\infty} f(x) = 1$$

Limite en $+\infty$:

$$\lim_{x \to +\infty} e^{-x} = 0 \quad \text{et} \quad \lim_{x \to +\infty} \ln(x+1) = +\infty$$
$$\lim_{x \to +\infty} f(x) = +\infty$$

On a:
$$f(0) = e^0 + \ln(1) = 1$$

Dérivée à gauche : Posons $t = \frac{1}{x} \to -\infty$:

$$\lim_{x \to 0^{-}} \frac{f(x) - 1}{x} = \lim_{x \to 0^{-}} \frac{e^{1/x}/x}{x} = \lim_{x \to 0^{-}} \frac{e^{1/x}}{x^{2}} = \lim_{t \to -\infty} t^{2} e^{t} = 0$$

$$\boxed{f'_{g}(0) = 0}$$

Dérivée à droite :

$$f'_d(0) = \lim_{x \to 0^+} \frac{e^{-x} + \ln(x+1) - 1}{x}$$

on a:

$$f(x) = \frac{e^{-x} - 1}{x} + \frac{\ln(x+1)}{x}$$

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1 \Rightarrow \lim_{x \to 0^+} \frac{e^{-x} - 1}{-x} = 1 \Rightarrow \lim_{x \to 0^+} \frac{e^{-x} - 1}{x} = -1$$

Et on a:

$$\lim_{x \to 0^+} \frac{\ln(x+1)}{x} = 1$$

$$f_d'(0) = -1 + 1 = \boxed{0}$$

Conclusion : f est dérivable en 0 et f'(0) = 0.

Interpretation: Cf admet un tangent horizontal au point $x_0 = 0$.

3)

a) **Pour** x > 0:

$$f'(x) = -e^{-x} + \frac{1}{x+1} = \frac{-(x+1)e^{-x} + 1}{x+1}$$
$$f'(x) = \frac{e^{-x}(e^x - (x+1))}{x+1}$$
$$f'(x) = \frac{e^{-x}(e^x - x - 1)}{x+1}$$
$$f'(x) = \frac{e^{-x}g(x)}{x+1}$$

b) **Pour** x < 0:

$$f(x) = \frac{1}{x}e^{1/x} + 1$$

$$f'(x) = (x^{-1}e^{1/x})' + (1)'$$

$$= -x^{-2}e^{1/x} + x^{-1}e^{1/x}(-x^{-2}) + 0$$

$$= -\frac{e^{1/x}}{x^2} - \frac{e^{1/x}}{x^3}$$

$$= e^{1/x} \left(-\frac{1}{x^2} - \frac{1}{x^3} \right)$$

$$= \frac{e^{1/x}}{x^3} (-x - 1)$$

$$f'(x) = -\frac{e^{1/x}(x+1)}{x^3}$$
 pour $x < 0$

Justification du signe:

$$e^{1/x} > 0$$
 toujours $x^3 < 0$ car $x < 0$ $-\frac{e^{1/x}}{x^3} > 0$ pour $x > 0$ $x + 1$ et $f'(x)$ ont le meme signe

c) Tableau de variations :

Pour x>0 : f'(x)>0 car $e^{-x}>0$ et g(x)>0 pout tout x>0 et x+1>0

Pour x < 0 : f'(x) = 0 on x = -1

x	$-\infty$		-1	0	$+\infty$
f'(x)		_	0	+	
f(x)	1	\nearrow	$1 - \frac{1}{e}$	7	$+\infty$

4)

On a:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{e^{-x}}{x} + \frac{\ln(x+1)}{x} \right)$$

$$= \lim_{x \to +\infty} \left(\frac{e^{-x}}{x} + \frac{\ln(x+1)(x+1)}{(x+1)x} \right) = 0 + 0 = \boxed{0}$$

$$= \lim_{x \to +\infty} \left(\frac{e^{-x}}{x} + \frac{\ln(x+1)}{(x+1)} \cdot \frac{(x+1)}{x} \right)$$

$$= \lim_{x \to +\infty} \frac{e^{-x}}{x} + \frac{\ln(x+1)}{(x+1)} \cdot \left(1 + \frac{1}{x} \right) = 0 + 0 = \boxed{0}$$

$$(\operatorname{Car} e^{-x} \to 0 \text{ et } \frac{\ln x}{x} \to 0 \text{ si on pose } X = x + 1)$$

Conclusion: Branche parabolique de direction (Ox) en $+\infty$.

Et on a

$$f(x) = \frac{e^{1/x}}{x} + 1$$

:

$$\lim_{x \to -\infty} f(x) = 0 + 1 = \boxed{1}$$

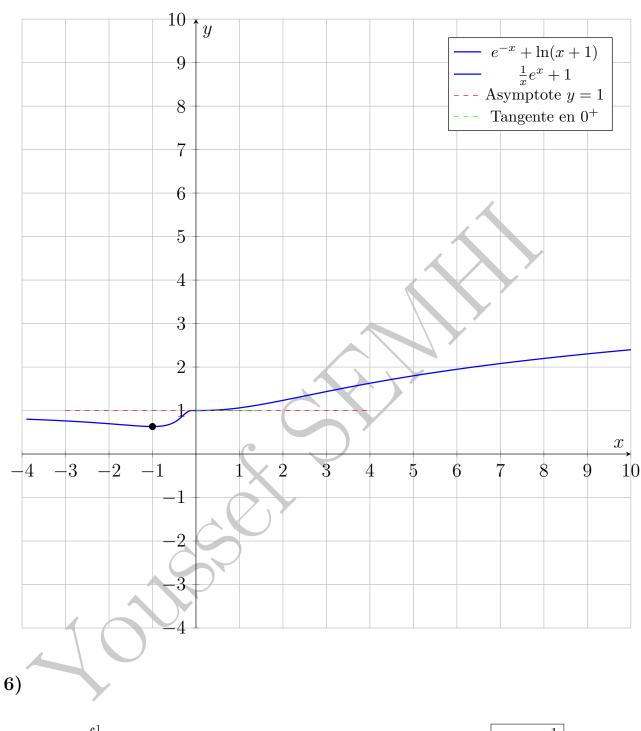
(Car
$$e^{1/x} \to 1$$
 et $\frac{1}{x} \to 0^-$)

La droite y = 1 est asymptote horizontale en $-\infty$.

Position relative:

$$f(x) - 1 = \frac{e^{1/x}}{x} < 0 \quad (\text{car } x < 0)$$

La courbe est **en dessous** de l'asymptote.



$$A = \int_0^1 (e^{-x} + \ln(x+1)) dx = \left[-e^{-x} + (x+1)\ln(x+1) - x \right]_0^1 = \left[2\ln 2 - \frac{1}{e} \right]$$

Partie 3

1. Calcul de u_1 et vérification des inégalités

La suite est définie par :

$$\begin{cases} u_0 = \ln(2) \\ u_{n+1} = g(u_n) = e^{u_n} - u_n - 1 \end{cases}$$

Calcul de u_1 :

$$u_1 = g(u_0) = e^{\ln(2)} - \ln(2) - 1 = 2 - \ln(2) - 1 = 1 - \ln(2)$$

on a:

 $0 < u_1 : \operatorname{Car} \ln(2) < 1 \operatorname{donc} 1 - \ln(2) > 0$

 $u_1 < u_0 : 1 - \ln(2) < \ln(2)$

 $u_0 < \alpha$: D'après Partie 1, $\alpha \in]1,2[$ et g croissante sur $[0,+\infty[$. On a $g(\ln(2)) \approx 0.3069 < \ln(2)$. Comme $g(\alpha) = \alpha > 1$ et g croissante, nécessairement $\ln(2) < \alpha$.

conclusion:

$$0 < u_1 < u_0 < \alpha$$

2)

Par récurrence :

Initialisation $(n = 0) : 0 < u_0 < \alpha$.

Hérédité : Supposons $0 < u_n < \alpha$ pour un $n \ge 0$.

$$u_{n+1} = g(u_n) > 0 \text{ car } g(x) > 0 \text{ pour } x > 0$$

 $u_{n+1} = g(u_n) < g(\alpha) = \alpha$ car g croissante et $u_n < \alpha$

Conclusion : $0 < u_n < \alpha$ pour touts $n \ge 0$.

3)

Par récurrence :

Initialisation $(n = 0) : u_1 < u_0$

Hérédité : Supposons $u_{n+1} < u_n$ pour un $n \ge 0$.

$$u_{n+2} = g(u_{n+1}) < g(u_n) = u_{n+1}$$
 car g est croissante

Conclusion: (u_n) est decroissant.

4)

Convergence:

 (u_n) décroissante et minorée par 0

Donc, (u_n) converge vers ℓ

Calcul de la limite:

$$\ell = g(\ell)$$

Donc ℓ vérifie $\ell = e^{\ell} - \ell - 1$ soit $\ell = \alpha$ (unique solution dans]1, 2[).

$$\lim_{n \to +\infty} u_n = \alpha$$